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W. Öller, H. Eberl, W. Majerotto, C. Weber
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Abstract. In the minimal supersymmetric standard model (MSSM) the masses of the neutralinos and
charginos depend on the gaugino and higgsino mass parameters M , M ′ and µ. If supersymmetry is real-
ized, the extraction of these parameters from future high energy experiments will be crucial to test the
underlying theory. We present a consistent method for properly defining on-shell parameters at one-loop
level and determining these from precision measurements. In addition, we show how a GUT relation for
the parameters M and M ′ can be tested at one-loop level. The numerical analysis is based on a complete
one-loop calculation. The derived analytic formulae are given in the appendix.

1 Introduction

If supersymmetry (SUSY) as the most attractive exten-
sion of the standard model is realized at low energies,
the next generation of high energy physics experiments
at Tevatron, LHC and a future e+e− linear collider will
discover supersymmetric particles. Particularly at a linear
collider, it will be possible to perform measurements with
high precision [1,2] which allows one to test the underlying
SUSY model. For instance, at TESLA [1] the precision of
the mass determination of charginos and neutralinos, the
supersymmetric partners of the gauge and Higgs bosons,
will be ∆mχ̃±,0 = 0.1–1 GeV. To match this accuracy it
is indispensable to include higher order radiative correc-
tions.

One goal of all analyses based on precise measurements
of cross sections, decay branching ratios, masses of super-
symmetric particles, etc. will be the reconstruction of the
fundamental parameters of the underlying supersymmet-
ric model. In particular, this is needed for extrapolating
the parameters to the GUT point to check the unification
of the supersymmetry breaking parameters [3,4].

In the minimal supersymmetric standard model
(MSSM) the chargino and neutralino system depends on
the parameters M , M ′, µ and tanβ. M and M ′ are the
SU(2) and U(1) gauge mass parameters, µ is the higgsino
mass parameter and tanβ = v2

v1
with v1,2 the vacuum ex-

pectation values of the two neutral Higgs doublet fields.
At lowest order, it was shown in [5,6] that these param-
eters can be extracted from the masses and production
cross sections in e+e− collisions with polarized electron
beams. At higher order, this extraction of the parameters
is, however, not trivial. It depends on the definition of the
mass matrices (at higher order) and on the renormaliza-
tion scheme. This is the subject of this paper.

In the (scale dependent) DR scheme the one-loop cor-
rections to the chargino/neutralino mass matrix were cal-
culated in [7,8]. In [9] effective chargino mixing matri-
ces were introduced, which are independent of the renor-
malization scale. For the on-shell renormalization of the
chargino and neutralino system which we adopt here, two
methods were proposed [10,11]. They differ by different
counterterms to the parameters M ′, M and µ. Although
both schemes are equivalent in the sense that the ob-
servables (masses, cross sections, branching ratios, etc.)
are the same, the meaning of the parameters M , M ′, µ
extracted are different. In the following we want to an-
alyze in detail the determination of the parameters of
the chargino/neutralino mass matrices at one-loop level
in the scheme [11]. We will point out that at one-loop
level the values of the on-shell parameters M and µ de-
pend on whether they are determined from the chargino
or neutralino system. Another interesting issue is how the
GUT relation M ′ = cM (c = 5

3 tan2 θW in SU(5), c =
11 tan2 θW in AMSB) valid in the DR scheme can be tested
if the on-shell values of M ′ and M are extracted from ex-
periment. The one-loop corrections will also change the
gaugino and higgsino nature of the charginos and neu-
tralinos, in particular also of the lightest neutralino. This
is important for the dark matter search [12–14]. The whole
analysis is based on a full one-loop calculation within the
MSSM. The corresponding formulae are given in the ap-
pendix.

2 The chargino–neutralino sector

In the CP conserving MSSM the chargino mass matrix
has at tree level the form
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X̃ =

(
M

√
2mW sinβ√

2mW cosβ µ

)
, (1)

where we takeM , µ,mW and tanβ as on-shell parameters.
M and µ are taken real. With the real rotation matrices
U and V

U =

(
cosΦL sinΦL

− sinΦL cosΦL

)
, V =

(
cosΦR sinΦR

− sinΦR cosΦR

)

(2)
it can be diagonalized,

U X̃ V T = diag(ε1 m̃χ̃+
1
, ε2 m̃χ̃+

2
) , (3)

with εi = ±1 and the tree-level masses m̃χ̃+
1
< m̃χ̃+

2
. The

solutions of (3) are

tan 2ΦL =
2
√

2mW (M cosβ + µ sinβ)
M2 − µ2 − 2m2

W cos 2β
,

tan 2ΦR =
2
√

2mW (µ cosβ +M sinβ)
M2 − µ2 + 2m2

W cos 2β
, (4)

and

m̃2
χ̃+

1,2
=

1
2
(
M2 + µ2 + 2m2

W (5)

∓
√

(M2 + µ2 + 2m2
W )2 − 4(Mµ−m2

W sin 2β)2
)
.

As shown in [11], the on-shell mass matrix X at one-loop
level can be written as a sum of the tree-level mass matrix
X̃ in terms of the on-shell parameters as in (1) and the
ultraviolet finite shifts ∆X

X = X̃ +∆X . (6)

This implies corrections in the mass eigenvalues, ∆mχ̃+
i
,

and in the rotation angles of the coupling matrices, ∆ΦL
and ∆ΦR.

In the neutralino sector, we have the symmetric tree-
level mass matrix

Ỹ = (7)



M′ 0 −mZ sin θW cos β mZ sin θW sin β

0 M mZ cos θW cos β −mZ cos θW sin β

−mZ sin θW cos β mZ cos θW cos β 0 −µ

mZ sin θW sin β −mZ cos θW sin β −µ 0


 .

Using the real matrix Z, we can rotate from the gauge
eigenstate basis of the neutral gauginos and higgsinos
ψ0

j = (−iλ′,−iλ3, ψ1
H1
, ψ2

H2
) to the mass eigenstate basis

of the neutralinos χ̃0
i = Zijψj ,

Z Ỹ ZT = diag(ε1 m̃χ̃0
1
, ε2 m̃χ̃0

2
, ε3 m̃χ̃0

3
, ε4 m̃χ̃0

4
) . (8)

Taking the one-loop terms into account,

Y = Ỹ +∆Y , (9)

we again obtain corrections in the masses, ∆mχ̃0
i
, and in

the coupling matrix Z = Z̃ +∆Z.

3 Parameter fixing

In supersymmetry one has several mass matrices due to
the mixing of interaction states. We define the on-shell
mass matrix such that all elements which are non-zero at
tree level have formally the tree-level form but give the
physical masses and rotation matrices. We always start
with a certain set of on-shell input parameters. For these
we need fixing conditions. All other on-shell entries in the
mass matrices can then be calculated.

The standard model input parameters are the pole
masses mW = 80.423 GeV and mZ = 91.1876 GeV. The
Weinberg angle θW is fixed by cos θW = mW /mZ [15].
The SUSY parameter tanβ is fixed by the condition that
there is no transition from the physical CP odd Higgs par-
ticle A0 to the vector boson Z0 [16], Im Π̂A0Z0(m2

A) = 0
which gives the counterterm δ tanβ = ImΠA0Z0(m2

A)/
(2mZ cos2 β). Π̂A0Z0 is the renormalized self-energy for
the mixing of A0 and Z0. In this study, the physical in-
put for calculating our input on-shell parameters M , µ,
and M ′ are the two chargino masses and one neutralino
mass. For the other SUSY parameters we use the sim-
plifications At = Ab = Aτ = A for the trilinear cou-
plings and MQ̃1,2

= MŨ1,2
= MD̃1,2

= ML̃1,2
= MẼ1,2

,
MQ̃3

= 10
9 MŨ3

= 10
11MD̃3

= ML̃3
= MẼ3

= MQ̃ for the
soft breaking sfermion mass parameters.

In the DR scheme (at a scale Q) the parameters M̂
and µ̂ are the same in the chargino and neutralino sector.
However, the on-shell parameters M and µ get different
one-loop corrections and thus have different on-shell values
due to different thresholds:

M̂(Q) = M + δM(Q) = M χ̃+
+ δX11

= M χ̃0
+ δY22 , (10)

µ̂(Q) = µ+ δµ(Q) = µχ̃+
+ δX22

= µχ̃0 − δY34 . (11)

δXij , δYij are the counterterms to the elements Xij , Yij

of the chargino and neutralino mass matrix. The corre-
sponding expressions are given in the appendix. The finite
difference can be expressed in terms of the chargino and
neutralino mass matrix counterterms,

∆M ≡ M χ̃+ −M χ̃0
= δY22 − δX11 , (12)

∆µ ≡ µχ̃+ − µχ̃0
= −(δY34 + δX22) . (13)

Therefore, we have the freedom to define the input on-
shell parameters M and µ in the chargino sector, i.e. M ≡
M χ̃+

= X11, µ ≡ µχ̃+
= X22, and obtain corrections in

the neutralino sector, or fix M and µ in the neutralino
sector, i.e. M ≡ M χ̃0

= Y22, µ ≡ µχ̃0
= −Y34, and get

corrections in the chargino mass matrix. For a particular
physical situation the elements of the one-loop mass ma-
tricesX and Y (with on-shell parameters plus corrections)
are given by the measured neutralino, chargino masses and
other observables, e.g. cross sections.

If M and M ′ are independent parameters it is con-
venient to use for the on-shell M ′ the definition Y11 ≡
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Fig. 1a,b. Relative corrections to the χ̃0
1 and χ̃+

1 masses with gauge unification, fixing M and µ in the chargino (full lines) and
neutralino (dashed lines) sector. The parameters are {mA0 , tan β, MQ̃1

, MQ̃, A, µ} = {500, 40/GeV, 300, 300, −400, −220} GeV.
The grey areas are excluded by the bound m

χ̃+
1

≥ 100 GeV

a b

Fig. 2a,b. The corrections ∆M and ∆µ as a function of M and µ (fixed in the chargino sector) with the parameters
{mA0 , tan β, MQ̃1

, MQ̃, A} = {500, 7/GeV, 300, 300, −500} GeV. The M ′ fulfills the GUT relation

M ′ = Ỹ11. If the SU(5) GUT relation, M̂ ′ = 5
3 tan2 θ̂W M̂ ,

holds for the DR parameters M̂ and M̂ ′, we obtain a fi-
nite shift for the on-shell parameters. Thus we can write
Y11 ≡ M ′ = 5

3 tan2 θWM +∆Y11, with

∆Y11 =
(

2
cos2 θW

δ sin θW
sin θW

+
δM

M

)
Y11 − δY11 . (14)

The correction ∆Y11 is due to the same effect and of the
same order as ∆M and ∆µ, (12) and (13). Therefore we
include it in our calculations in the cases where gauge
unification is explicitly assumed. Because M depends on
the fixing this is also the case for ∆Y11. Let ∆Y χ̃+

11 be the
correction in the case where M is fixed in the chargino sec-
tor, and ∆Y χ̃0

11 the case where M is fixed in the neutralino
sector; it follows that

∆Y χ̃+

11 −∆Y χ̃0

11 =
5
3

tan2 θW∆M . (15)

In Fig. 1 the mass corrections for the lightest neutralino
and chargino assuming gauge unification are shown as a
function ofM . IfM and µ are fixed in the neutralino sector
(dashed lines) we have Y22 ≡ M χ̃0

= M , X11 ≡ M χ̃+
=

M +∆M , Y34 ≡ −µχ̃0
= −µ, X22 ≡ µχ̃+

= µ +∆µ and
Y11 = 5

3 tan2 θWM + ∆Y χ̃0

11 . If M and µ are fixed in the
chargino sector (full lines) we get Y22 ≡ M χ̃0

= M −∆M ,
X11 ≡ M χ̃+

= M , Y34 ≡ −µχ̃0
= −(µ − ∆µ), X22 ≡

µχ̃+
= µ and Y11 = 5

3 tan2 θWM +∆Y χ̃+

11 . The differences
between the full and the dashed line are due to ∆M and
∆µ; see (12), (13) and (15).

In Fig. 2 the corrections ∆M and ∆µ are given as a
function of M and µ. For ∆M the corrections are in the
range of ∆M = −0.2 GeV (white) and ∆M = +0.6 GeV
(black). The corrections ∆µ are between ∆µ = −0.4 GeV
(white) and ∆µ = +0.5 GeV (dark grey). The difference
between two lines is 0.1 GeV.
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Fig. 3a,b. Corrections ∆G = G̃ − G in the gaugino components as a function of µ, with the parameters
{mA0 , tan β, MQ̃1

, MQ̃, A, M} = {500, 20/GeV, 300, 300, −500, 700} GeV. In a the correction of the χ̃0
1 character is presented

assuming the SU(5) GUT relation for the on-shell (full line) or DR (dashed line) parameters M and M ′. In b the corrections
for all four neutralinos {χ̃0

1, χ̃0
2, χ̃0

3, χ̃0
4} = {full, dashed, dotted, dash-dotted} are given (no gauge unification assumed)

Fig. 4a,b. The relative differences between the effective and on-shell M a and µ b, fixing the on-shell parameters in the chargino
(full line) and the neutralino (dashed line) sector with {m

χ̃+
1

, mχ̃0
1
, tan β, mA0 , MQ̃1

, MQ̃, A} = {135, 120, 20/GeV, 600, 350,
350, 500} GeV

4 Coupling corrections

With the one-loop corrections to the rotation matrices
U , V and Z, the gaugino and higgsino characters of the
individual chargino and neutralino states change. This
can have large effects on the decay widths of processes
where these particles are involved [17]. The character of
the LSP neutralino plays a key role in dark matter theories
[12–14]. In Fig. 3 the correction in the gaugino (higgsino)
components of the neutralino χ̃0

i , Gi = |Zi1|2 + |Zi2|2
(Hi = |Zi3|2 + |Zi4|2 = 1 − Gi), is presented. In Fig. 3a
we show that the correction for the lightest neutralino is
in the range of 5% (full line). In the case of gauge uni-
fication (dashed line) the additional large correction to
Y11 (approximately +10.8% at µ = 370 GeV) leads to a
change in the gaugino component up to 30%. In Fig. 3b the
corrections for all four neutralinos is given for the same
parameter set. In the range between µ = 370 GeV and
µ = 400 GeV, χ̃0

2 and χ̃0
3 are nearly mass-degenerated at

tree level. At one-loop the mass order and – as a con-
sequence – the numbering changes. This is just a small
effect in the mass spectrum, but the interchanging of the
gaugino and higgsino components is in the range of ±30%.

5 Parameter analysis

The chargino masses mχ̃+
1,2

and production cross sections

can be measured very precisely at a future e+e− linear
collider [1,2]. From these observables the mixing angles
cosΦL,R and by inverting the relations (4) and (5) the
fundamental SUSY parameters M , µ and tanβ can be ob-
tained in lowest order [5,6]. If a neutralino mass is known,
one can also obtain M ′ at tree level. However, high pre-
cision experiments will make it necessary to take into ac-
count one-loop corrections. In the following, we will com-
pare the tree-level approximations and the full one-loop
corrected fundamental SUSY parameters.

We use as input the two chargino masses, the mass of
the lightest neutralino and assume the on-shell tanβ is
known from the Higgs sector [16]. Calculating the SUSY
parameters M and µ from the tree-level mass matrices
as given in (1) and (7) leads to a four-fold ambiguity.
For comparison we choose the same branch as in [10].
Because we use as input the physical masses this set of
tree-level mass matrices Xtree, Y tree is different from X̃
and Ỹ , which give the true tree-level mass eigenvalues.
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Fig. 5a,b. a shows the effective (dashed line) and on-shell (full line) M ′. In b there are the relative corrections to cos ΦL (full
line) and cos ΦR (dashed line). The parameters are the same as in Fig. 4

On the other hand, Xtree and Y tree are defined to give
the right physical (on-shell) chargino masses and one neu-
tralino mass. To calculate the one-loop corrections, values
for the other SUSY parameters (A, MQ̃, MQ̃1

, mA0) are
needed. The following example, calculated for the same
set of parameters as in Fig. 4 but mχ̃+

2
= 350 GeV, shows

the chargino and neutralino mass matrices in tree-level
approximation plus the one-loop corrections:

Y = Y tree +∆Y tree

=




203.7 0 −2.1 42.9
0 325.9 4.0 −80.3

−2.1 4.0 0 −147.0
42.9 −80.3 −147.0 0




+




−5.1 −0.2 −0.2 1.3
−0.2 1.5 −0.5 1.8
−0.2 −0.5 −0.1 1.0
1.3 1.8 1.0 3.7


 ,

X = Xtree +∆Xtree

=

(
325.9 113.6
5.7 147.0

)
+

(
1.6 −3.1

−0.9 −1.1

)
.

Note that both Xtree (Y tree) and X (Y ) have the same
physical mass eigenvalues of χ̃+

1,2 and χ̃0
1. We call the

parameters used in Xtree and Y tree effective parameters
M eff , µeff and M ′eff corresponding to the parameters used
in [10]. With Y = Ỹ + ∆Y = Y tree + ∆Y tree (and the
corresponding relation for the chargino mass matrix) the
fundamental on-shell parameters can be determined. For
instance, M ′ ≡ Y11 = M ′eff + ∆Y tree

11 = 203.7 − 5.1.
With M fixed in the chargino system we get M ≡ X11 =
M eff +∆Xtree

11 = 325.9 + 1.6.
In Figs. 4 and 5a the differences between the effec-

tive parameters in Y tree, Xtree and the properly defined
one-loop on-shell parameters are shown. The effective pa-
rameters are obtained applying tree-level relations on the
measured masses, while the on-shell parameters are de-
fined by the elements of the one-loop corrected mass ma-
trices. As the effective tree-level and the one-loop cor-

rected chargino mass matrix have the same eigenvalues,
this may imply sizeable corrections in the rotation angles
∆ΦL,R = Φeff

L,R − ΦL,R. This can be seen in Fig. 5b.
If the two chargino masses are known from experiment

the complete neutralino mass spectrum can be predicted
by assuming the relation M̂ ′ = c tan2 θ̂W M̂ for the DR
parameters or – in the tree-level approximation – for the
effective parameters. In Figs. 6 and 7 there are two differ-
ent cases shown: For a SU(5) GUT (c = 5

3 ) and an AMSB
model (c = 11). We get large corrections for the bino-like
neutralino due to the correction in Y11. This is for χ̃0

1 or
χ̃0

3 (depending on mχ̃+
2
) in the SU(5) GUT scenario and

χ̃0
4 in the AMSB model.

The GUT relation can be tested by calculating the DR
parameters M̂(Q) = M + δM(Q), M̂ ′(Q) = M ′ + δM ′(Q)
and tan θ̂W(Q) = tan θW + δ tan θW(Q) at a scale Q. As-
suming such a relation for the on-shell or effective param-
eters is an inaccurate approximation, as shown in Fig. 8.
For the given set of input parameters the ratio M̂ ′

M̂
(full

line) fulfills the SU(5) GUT relation at mχ̃+
2

� 402 GeV.
Using the effective M eff , M ′eff (dotted line) and the on-
shell tan θW the calculation leads to mχ̃+

2
� 450 GeV.

Even for the on-shell M and M ′ the GUT point lies at
mχ̃+

2
� 437 GeV.

6 Conclusions

We have presented a detailed discussion of the chargino
and neutralino mass parameters at one-loop level. The
on-shell parameters M , µ and M ′ are properly defined by
the on-shell mass matrix elements. We have shown that
at one-loop level the values M and µ depend on whether
they are determined from the chargino or neutralino sys-
tem. We discussed the difference between the on-shell and
the so-called effective parameters, which are obtained from
observables, e.g. on-shell masses, inserted into tree-level
relations. The corrections to the tree-level mass matrices
in terms of the on-shell and effective parameters are dis-
cussed in different scenarios. The numerical analysis based
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Fig. 6a,b. The neutralino mass spectrum a at one-loop (full) and tree level (dashed) and the relative corrections b for the
parameters {m

χ̃+
1

, tan β, mA0 , MQ̃1
, MQ̃, A} = {135, 20/GeV, 600, 350, 350, 500} GeV for a SU(5) GUT model. For the mass

of the χ̃0
4 (not shown) one has mχ̃0

4
� mtree

χ̃0
4

� m
χ̃+
2

. In b the {full, dashed, dotted, dash-dotted} line corresponds to {χ̃0
1, χ̃0

2,

χ̃0
3, χ̃0

4}

Fig. 7a,b. An AMSB model neutralino mass spectrum for the same parameters as in Fig. 6. In a only the tree-level approximation
for the bino-like mχ̃0

4
is shown. In b the {full, dashed, dotted, dash-dotted} line corresponds to {χ̃0

1, χ̃0
2, χ̃0

3, χ̃0
4}

on a complete one-loop calculation has shown that the cor-
rections to the chargino and neutralino masses can go up
to 10% and the change in the gaugino and higgsino com-
ponents can be in the range of 30%. In addition, we have
presented how a possible GUT relation for the parameters
M and M ′ can be tested at one-loop level.
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Appendix

In the following we present the explicit formulas of all non-
(s)fermionic self-energies for the neutralinos, charginos,W
and Z bosons and the A0Z0-graphs in the MSSM. The
(s)fermionic part can be found in the appendix of [11]. The
two-point functions A0, B0, B1 and B00 [18] are given in
the convention of [19]. The neutralino and chargino mass

Fig. 8. The ratio M′
M

as a function of m
χ̃+
2

. The full, dashed

and dotted line corresponds to the DR, on-shell and effective
parameters. The input parameters are the same as in Fig. 4

matrix counterterms are [11]

δXij =
1
2

2∑
l,n=1

UliVnj Re
[
mχ̃+

l
ΠL

nl

(
m2

χ̃+
l

)
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+ mχ̃+
n
ΠR

ln

(
m2

χ̃+
n

)
+ΠS,R

nl

(
m2

χ̃+
l

)
+ΠS,L

ln

(
m2

χ̃+
n

)]
,

δYij =
1
2

4∑
l,n=1

ZliZnj Re
[
mχ̃0

l
ΠL

nl

(
m2

χ̃0
l

)
(A.1)

+ mχ̃0
n
ΠR

ln

(
m2

χ̃0
n

)
+ΠS,R

nl

(
m2

χ̃0
l

)
+ΠS,L

ln

(
m2

χ̃0
n

)]
,

with the convention

Πij(k2) = k/
(
PLΠ

L
ij(k

2) + PRΠ
R
ij(k

2)
)

+ PLΠ
S,L
ij (k2) + PRΠ

S,R
ij (k2) . (A.2)

Neutralino self-energies

Π
H0

k
ij (k) =

g2

(4π)2

×
4∑

n=1

2∑
k=1

[
F 0

nikF
0
jnk

(
mχ̃0

n
B0

(
k2,m2

χ̃0
n
,m2

H0
k

)

− k/B1

(
k2,m2

χ̃0
n
,m2

H0
k

))]
, (A.3)

Π
A0

l
ij (k) =

−g2

(4π)2

×
4∑

n=1

4∑
l=3

[
F 0

nilF
0
jnl

(
mχ̃0

n
B0

(
k2,m2

χ̃0
n
,m2

A0
l

)

+ k/B1

(
k2,m2

χ̃0
n
,m2

A0
l

))]
, (A.4)

Π
H+

k
ij (k)

=
2∑

n=1

2∑
k=1

[ (
FR

nikF
L
njk + FL

nikF
R
njk

)
×mχ̃+

n
B0

(
k2,m2

χ̃+
n
,m2

H+
k

)
− (FR

nikF
R
njk + FL

nikF
L
njk

)
×k/B1

(
k2,m2

χ̃+
n
,m2

H+
k

)]
, (A.5)

ΠZ
ij(k) =

2g2
Z

(4π)2

×
4∑

n=1

O
′′L
ni O

′′L
jn

[
2mχ̃0

n
B0

(
k2,m2

χ̃0
n
,m2

Z

)

− k/B1

(
k2,m2

χ̃0
n
,m2

Z

)]
, (A.6)

ΠW
ij (k)

=
−2g2

(4π)2

2∑
n=1

[
2
(
OR

inO
L
jn +OL

inO
R
jn

)
×mχ̃+

n
B0

(
k2,m2

χ̃+
n
,m2

W

)
+
(
OL

inO
L
jn +OR

inO
R
jn

)
+k/B1

(
k2,m2

χ̃+
n
,m2

W

)]
. (A.7)

Chargino self-energies

Π
H0

k
ij (k) = − g2

(4π)2
(A.8)

×
2∑

n=1

2∑
k=1

[
k/
(
F+

nikF
+
njkPR + F+

inkF
+
jnkPL

)

× B1

(
k2,m2

χ̃+
n
,m2

H0
k

)
− mχ̃+

n

(
F+

nikF
+
jnkPR + F+

inkF
+
njkPL

)
× B0

(
k2,m2

χ̃+
n
,m2

H0
k

)]
,

Π
A0

l
ij (k) = − g2

(4π)2
(A.9)

×
2∑

n=1

4∑
l=3

[
k/
(
F+

nilF
+
njlPR + F+

inlF
+
jnlPL

)

× B1

(
k2,m2

χ̃+
n
,m2

A0
l

)
+ mχ̃+

n

(
F+

nilF
+
jnlPR + F+

inlF
+
njlPL

)
× B0

(
k2,m2

χ̃+
n
,m2

A0
l

)]
,

Π
H+

k
ij (k) = − g2

(4π)2
(A.10)

×
4∑

n=1

2∑
k=1

[
k/
(
FL

inkF
L
jnkPR + FR

inkF
R
jnkPL

)
× B1

(
k2,m2

χ̃0
n
,m2

H+
k

)
− mχ̃0

n

(
FL

inkF
R
jnkPR + FR

inkF
L
jnkPL

)
× B0

(
k2,m2

χ̃0
n
,m2

H+
k

)]
,

Πγ
ij(k) = − 2e2

(4π)2
(A.11)

× δij

[
k/B1

(
k2,m2

χ̃+
i

, 0
)

+ 2mχ̃+
i
B0

(
k2,m2

χ̃+
i

, 0
)]

,

ΠZ
ij(k) = − 2g2

Z

(4π)2
(A.12)

×
2∑

n=1

[
k/
(
O

′R
niO

′R
jnPR +O

′L
niO

′L
jnPL

)

× B1

(
k2,m2

χ̃+
n
,m2

Z

)
+ 2mχ̃+

n

(
O

′R
niO

′L
jnPR +O

′L
niO

′R
jnPL

)
× B0

(
k2,m2

χ̃+
n
,m2

Z

)]
,

ΠW
ij (k) = − 2g2

(4π)2
(A.13)

×
4∑

n=1

[
k/
(
OR

niO
R
njPR +OL

niO
L
njPL

)
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× B1

(
k2,m2

χ̃0
n
,m2

W

)
+ 2mχ̃0

n

(
OR

niO
L
njPR +OL

niO
R
njPL

)
× B0

(
k2,m2

χ̃0
n
,m2

W

)]
.

Z self-energies

Π χ̃0χ̃0

T

(
k2) = − g2

Z

(4π)2

×
4∑

i,j=1

(
O

′′L
ij

)2 [(
m2

χ̃0
i
+m2

χ̃0
j
+ 2mχ̃0

i
mχ̃0

j
− k2

)

×B0

(
k2,m2

χ̃0
i
,m2

χ̃0
j

)
+2A0(m2

χ̃0
i
) − 4B00

(
k2,m2

χ̃0
i
,m2

χ̃0
j

)]
, (A.14)

Π χ̃+χ̃+

T

(
k2) = − g2

Z

(4π)2

×
2∑

i,j=1

[(
(m2

χ̃+
i

+m2
χ̃+

j

− k2)
((

O
′L
ij

)2
+
(
O

′R
ij

)2
)

− 4O
′L
ij O

′R
ij mχ̃+

i
mχ̃+

j

)
B0

(
k2,m2

χ̃+
i

,m2
χ̃+

j

)
+
((

O
′L
ij

)2
+
(
O

′R
ij

)2
)

×
(
2A0(m2

χ̃+
i

) − 4B00

(
k2,m2

χ̃+
i

,m2
χ̃+

j

))]
, (A.15)

Π
H0

kA0
l

T

(
k2) = − g2

Z

(4π)2

×
2∑

k,l=1

c2klB00

(
k2,m2

A0
l
,m2

H0
k

)
, (A.16)

Π
H+

k H+
k

T

(
k2) = − g2

Z

(4π)2
(1 − 2s2W)2

×
2∑

k=1

B00

(
k2,m2

H+
k

,m2
H+

k

)
, (A.17)

Π
H0

k/A0
k/H+

k

T =
g2

Z

4(4π)2
(A.18)

×
2∑

k=1

(
A0

(
m2

H0
k

)
+A0

(
m2

A0
k

)

+2
(
1 − 2s2W

)2
A0

(
m2

H+
k

))
,

Π
ZH0

k

T

(
k2) =

g2
Z

(4π)2
m2

Z

× (
s2αβB0

(
k2,m2

h0 ,m2
Z

)
+c2αβB0(k2,m2

H0 ,m2
Z)
)
, (A.19)

ΠWG+

T
(
k2) = 2

g2
Z

(4π)2
m2

W s4W

× B0
(
k2,m2

G+ ,m2
W

)
, (A.20)

ΠWW
T

(
k2) = − g2

Z

(4π)2

× [
10B00

(
k2,m2

W ,m2
W

)
+
(
5k2 + 2m2

W

)
B0
(
k2,m2

W ,m2
W

)
+ 2k2B1

(
k2,m2

W ,m2
W

)
+ 2A0

(
m2

W

)]
, (A.21)

Π
W/ω
T

(
k2) =

3g2

8π2 c
2
WA0

(
m2

W

)
+ 2

g2

(4π)2
c2WB00

(
k2,m2

ω+ ,m2
ω+

)
. (A.22)

W self-energies

Π χ̃0χ̃+

T

(
k2) =

−g2

(4π)2

×
4,2∑

i,j=1

[((
m2

χ̃0
i
+m2

χ̃+
j

− k2
)((

OL
ij

)2
+
(
OR

ij

)2)

− 4OL
ijO

R
ijmχ̃0

i
mχ̃+

j

)
B0

(
k2,m2

χ̃0
i
,m2

χ̃+
j

)
(A.23)

+
((
OL

ij

)2
+
(
OR

ij

)2)
×
(
A0

(
m2

χ̃0
i

)
+A0

(
m2

χ̃+
j

)
−4B00

(
k2,m2

χ̃0
i
,m2

χ̃+
j

))]
,

ΠHH
T

(
k2) = − g2

(4π)2
(A.24)

×

 2∑

k,l=1

c2klB00

(
k2,m2

H+
l

,m2
H0

k

)

+
2∑

k=1

B00

(
k2,m2

H+
k

,m2
A0

k

))
,

ΠH
T =

1
(4π)2

g2

2
(A.25)

×
2∑

k=1

[
1
2
A0

(
m2

H0
k

)
+

1
2
A0

(
m2

A0
k

)
+A0

(
m2

H+
k

)]
,

Π
H0

kW
T

(
k2) =

1
(4π)2

g2m2
W

× (
c2αβB0

(
k2,m2

H0 ,m2
W

)
+s2αβB0(k2,m2

h0 ,m2
W )
)
, (A.26)

ΠZG+

T
(
k2) =

1
(4π)2

m2
W (A.27)

× [
g2

Zs
4
WB0

(
k2,m2

G+ ,m2
Z

)
+ e2B0(k2,m2

G+ , 0)
]
,

ΠWZ
T

(
k2) = − 1

(4π)2
g2c2W

× [
10B00

(
k2,m2

Z ,m
2
W

)
+
(
5k2 + 2m2

Z

)
B0
(
k2,m2

Z ,m
2
W

)
+2k2B1

(
k2,m2

Z ,m
2
W

)
+ 2A0

(
m2

W

)]
, (A.28)
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ΠWγ
T

(
k2) = − 1

(4π)2
g2s2W

× [
10B00

(
k2, 0,m2

W

)
+ 5k2B0

(
k2, 0,m2

W

)
+2k2B1

(
k2, 0,m2

W

)
+ 2A0

(
m2

W

)]
, (A.29)

Π
Z/γ/W
T =

3g2

(4π)2

× [
c2WA0

(
m2

Z

)
+ s2WA0(0) +A0

(
m2

W

)]
, (A.30)

Πω
T
(
k2) = 2

g2

(4π)2
(A.31)

×
[
c2WB00

(
k2,m2

ωZ
,m2

ω+

)
+ s2WB00

(
k2,m2

ωγ
,m2

ω+

)]
.

A0Z0 mixing

Π χ̃0χ̃0

AZ

(
k2) =

iggZ

8π2

×
4∑

i,j=1

F 0
ji3O

′′L
ij

(
mχ̃0

i
B0

(
k2,m2

χ̃0
i
,m2

χ̃0
j

)

+
(
mχ̃0

i
−mχ̃0

j

)
B1

(
k2,m2

χ̃0
i
,m2

χ̃0
j

))
, (A.32)

Π χ̃+χ̃+

AZ

(
k2) =

iggZ

8π2

×
2∑

i,j=1

[
(F+

ji3O
′L
ij − F+

ij3O
′R
ij )mχ̃+

i
B0

(
k2,m2

χ̃+
i

,m2
χ̃+

j

)

+
(
(F+

ji3O
′L
ij − F+

ij3O
′R
ij )mχ̃+

i

+(F+
ji3O

′R
ij − F+

ij3O
′L
ij )mχ̃+

j

)
× B1

(
k2,m2

χ̃+
i

,m2
χ̃+

j

)]
, (A.33)

ΠH
AZ

(
k2) =

ig2
ZmZ

4(4π)2
(A.34)

×
2∑

l,k=1

cklc
′
kl

[
B0

(
k2,m2

A0
l
,m2

H0
k

)

+2B1

(
k2,m2

A0
l
,m2

H0
k

)]
,

ΠZH
AZ

(
k2) =

ig2
ZmZ

2(4π)2
cαβsαβ

×
2∑

k=1

[
(−1)k(2B0 +B1)

(
k2,m2

Z ,m
2
H0

k

)]
. (A.35)

Couplings

We used the abbreviations cW ≡ cos θW, sW ≡ sin θW,
gZ ≡ g/cW, cαβ ≡ cos(α − β), sαβ ≡ sin(α − β), with
α the mixing angle in the {h0, H0} system, and for the
Higgs fields H0

k ≡ {h0, H0}k, H±
k ≡ {H±, G±}k, A0

l ≡
{A0, G0, A0, G0}l. The coupling matrices are

F 0
lmk

=
ek

2
[Zl3Zm2 + Zm3Zl2 − tan θW (Zl3Zm1 + Zm3Zl1)]

+
dk

2
[Zl4Zm2 + Zm4Zl2 − tan θW (Zl4Zm1 + Zm4Zl1)]

= F 0
mlk (A.36)

and

F+
ijk =

1√
2

(ekVi1Uj2 − dkVi2Uj1) , (A.37)

FR
ilk = dk+2

[
Vi1Zl4

+
1√
2
(Zl2 + Zl1 tan θW)Vi2

]
, (A.38)

FL
ilk = −ek+2

[
Ui1Zl3

− 1√
2
(Zl2 + Zl1 tan θW)Ui2

]
. (A.39)

dk and ek take the values

dk = {− cosα,− sinα, cosβ, sinβ}k,

ek = {− sinα, cosα,− sinβ, cosβ}k . (A.40)

The other used couplings are

OL
ij = Zi2Vj1 − 1√

2
Zi4Vj2 ,

OR
ij = Zi2Uj1 +

1√
2
Zi3Uj2 , (A.41)

O
′L
ij = −Vi1Vj1 − 1

2
Vi2Vj2 + δij sin2 θW

= O
′R
ij (U ↔ V ) , (A.42)

O
′′L
ij = −1

2
Zi3Zj3 +

1
2
Zi4Zj4 = −O′′R

ij , (A.43)

ckl : c11 = c22 = cαβ , c21 = −c12 = sαβ , (A.44)

c′kl =

(
− cos 2β sin(α+ β) − sin 2β sin(α+ β)
cos 2β cos(α+ β) sin 2β cos(α+ β)

)
. (A.45)
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